#### **Innovation for Our Energy Future**

# Regionalization and GIS Use in the Wind Deployment Systems Model (WinDS)

GIS and Regionalization Issues in EERE Modeling

July 15, 2004

Walter Short

Donna Heimiller



### **Presentation Contents**

- WinDS Model Description
- WinDS-H2 Description
- GIS/regional inputs
- Reduced form effort





### WinDS Model

(Wind Deployment Systems Model)

- A multi-regional, multi-time-period model of capacity expansion in the electric sector of the U.S.
- Designed to estimate market potential of wind energy in the U.S. for the next 20 – 50 years under different technology development and policy scenarios
- Two primary components GIS and LP (linear programming)





### WinDS is Designed to Address the Principal Market Issues for Wind

- Access to and cost of transmission
  - Low quality wind close to the load or high quality far away?
  - How much wind can be transmitted on existing lines?
  - Will wind penetrate the market if it must cover the cost of new transmission lines?
- Intermittency
  - How does wind capacity credit change with penetration?
  - How do ancillary service requirements increase with wind market penetration?
  - How much would dispersal of wind sites help?
  - Is on-site storage cost effective?





#### WinDS Addresses These Issues Through:

- Many wind supply and demand regions
- Constraints on existing transmission available to wind
- Explicit accounting for operating reserves, wind oversupply, and for wind capacity value as a function of the amount and dispersion of wind installations
- Tracking wind installations by supply/demand region, wind class and transmission line vintage
- CAES or H2 storage increases capacity value, and reduces transmission costs and ancillary service requirements





### WinDS Regions





### **Characteristics of WinDS regions**

- Four levels
  - Interconnects
  - NERC regions (matched to NEMS)
  - Power Control Areas (PCAs)
  - Wind supply/demand regions
    - Built up from counties
    - Never cross state lines
    - Assigned to a PCA
    - Separate wind resources from loads





### **Latest NREL Wind Resource Data**



#### **Characteristics of Wind Resource Data**

- Under development at NREL
- Both onshore and offshore with exclusions
- Offshore shallow and deep
- Classes 3 7
- Original data at the 200m and above level aggregated up to the WinDS regions





### **Transmission in WinDS**

#### Transmission Lines by Voltage





### Characteristics of the WinDS Transmission Data

- Based on Platts/RDI PowerMap data base
- Includes all lines > 100 kV and some 69 kV lines
- MW capacity based on kV rating and length (distance between connections)
- Use GIS to identify and aggregate capacity crossing regional boundaries in the LP





### WinDS Constraints on Wind Transmission







### WinDS Results - Base Case





### WinDS Offshore Installations in the Full R&D Case





# Benefits of WinDS Regional Disaggregation



- Captures transmission distances and bottlenecks
- Captures wind dispersion effects
- Allows state policies to be represented
- Allows finer representation of conventional fuel price variations
- Allows utility concerns at the PCA level to be simulated





### WinDS-H2





# WinDS-H2 Capacities Base Case



National Renewable Energy Laboratory

### GIS Inputs to the LP Portion of WinDS-H2

- Regional structure (subsets, center points)
- Electricity load and peak demand by PCA and wind region
- Existing conventional capacity by PCA
- Hydro energy by PCA
- Scheduled conventional capacity retirements by PCA
- Wind resources by class by wind region
- Existing wind capacity by wind region
- Wind-to-grid supply curve\*\*
- In-region wind supply curve\*\*
- Slope and population penalty data for wind
- Existing transmission capacity
  - Crossing borders of each wind region
  - From one PCA to a contiguous PCA
- Transportation fuel demand by wind region
- H2 inregion supply curves\*\*
- Natural gas pipeline access by wind region/county





### **GIS-derived Supply Curves**

- Two types
  - Cost to access grid
    - Assignment of wind resources to grid
    - GIS-based optimization
  - In-region supply
    - Two types
      - New intra-region transmission lines from wind to load
      - H2 pipelines from wind to load
    - GIS-based optimization





### Input Costs to Build Transmission to Grid



| Wind Power Class | Incremental Cost (cents/kWh) | Capacity (GVV) | Cummulative<br>Capacity (GW) |
|------------------|------------------------------|----------------|------------------------------|
| 3                | 0.0¢                         | 21.1           | 21.1                         |
| 3                | 0.1¢                         | 51.0           | 72.1                         |
| 3                | 0.2¢                         | 38.1           | 110.2                        |
| 3                | 0.3¢                         | 15.8           | 126.1                        |
| 3                | 0.4¢                         | 15.1           | 141.2                        |
| 3                | 0.5¢                         | 13.1           | 154.3                        |
| 3                | 0.6¢                         | 7.8            | 162.1                        |
| 3                | 0.7¢                         | 6.7            | 168.7                        |
|                  |                              | 5.7            | 470.4                        |



Laboratory

## Reduced Form Supply Curves Under Development

- Based on results from WinDS
- National and NERC region level
- Present total extra-generational costs as a function of wind penetration
  - Run a base case
  - Run again forcing the same level of wind but with all wind transmission costs set to zero.
    - Delta in objective function value divided by new wind capacity is the transmission cost adder per MW of wind
  - Run again forcing the same level of wind as base case, but with no intermittency degradation.
    - Delta in objective function value divided by new wind capacity is the intermittency cost adder per MW of wind





# Hypothetical Wind Non-Generation Cost Supply Curve





- Transmission and siting costs
  - Build cost to reach grid or load center
  - Build cost to circumvent bottlenecks
  - Cost to use existing grid
- Costs of intermittency
  - Backup capacity
  - Operating reserves
  - Surplus wind





### Regional/GIS Lessons Learned

- Regionalization: Beneficial, but there are limits
  - Data and computer requirements
  - Results evaluation
- Data not always available or may require further disaggregation:
  - e.g., gasoline consumption below the state level
- Some data available at such a fine level of detail that it has to be aggregated back up to use in other models:
  - e.g., wind resource data at 200m
- GIS can be used to do some optimization work, but it usually requires case-specific coding:
  - e.g., the supply curves for WinDS
- Lack of complete integration with the market model leads to some inaccuracies:
  - e.g., the wind-to-grid supply curve must assume a technology year for wind costs
- The large amount of GIS data required is bound to produce some oversights:
  - e.g., the exclusion data in the wind resource data for WinDS
- Difficult to modify the regional structure



